—— ГЕОХИМИЯ ——

УДК 549.21

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ НЕФТИ РАЗЛИЧНЫХ РЕГИОНОВ И ВОЗМОЖНЫЙ ИСТОЧНИК МЕТАЛЛОВ В НЕЙ

© 2008 г. Р. П. Готтих, Б. И. Писоцкий, Д. З. Журавлев

Представлено академиком А.Н. Дмитриевским 23.04.2007 г.

Поступило 11.05.2007 г.

В нефти диагносцируются практически все элементы периодической таблицы от крупноионных и высокозарядных несовместимых литофильных до совместимых транзитных, летучих халькофильных и элементов платиновой группы.

История изучения микроэлементного (МЭ) состава нефти насчитывает уже не один десяток лет. При этом использовались различные методы определения концентраций металлов: спектральный анализ зольных остатков, рентгенофлуоресцентный, нейтронно-активационный, каждый из которых имел свои недостатки, обусловленные низкой чувствительностью, существенными потерями элементов при озолении проб, ограниченными возможностями диагностики и др. Применение в последнее время масс-спектрометрии с ионизацией пробы в индуктивно связанной плазме (ICR-MS) в значительной степени расширило возможности изучения геохимии жидких углеводородов [1–3].

По существующим представлениям [4, 5] поступление МЭ в нефть обусловлено, главным образом, двумя процессами: наследованием ею микроэлементного состава органического вещества нефтематеринских пород в процессе образования углеводородов и (или) заимствованием из пород и пластовых вод в ходе геологической истории развития нефтегазоносного бассейна.

Целью настоящего исследования – изучение геохимических особенностей нефти и выяснение возможных источников микроэлементов в ней В основу изучения были положены данные по содержанию элементов в смолисто-асфальтеновых компонентах нефти, отобранной из месторождений Сибирской (Непско-Ботуобинская антекли-

Институт проблем нефти и газа

Российской Академии наук, Москва

Институт минералогии и геохимии

за, НБА), Восточно-Европейской (Волго-Уральская, ВУП; центральная часть Днепровско-Донецкой впадины, ДДВ), Западно-Сибирской, ЗС, и Тимано-Печорской провинций, ТПП, отличающихся по геолого-тектоническому строению, истории развития, литологическому составу продуктивных горизонтов, их возрасту, фазовому состоянию углеводородов в залежах и т.д. Из каждого региона проанализированы по семь-десять проб методом ICP-MS, дополненных данными нейтронно-активационного анализа (приблизительно 80 проб). Изученные нефти отличаются между собой по физико-химическим характеристикам (плотность, групповой состав и др.), глубиной отбора (от 5800 м в ДДВ до 800 м на ЮТС), приуроченностью к различным тектоническим элементам регионов (антеклизы, сводовые поднятия, рифтогенные впадины, моноклинали, зоны разломов второго и третьего порядков).

Использование смолисто-асфальтеновых компонентов для изучения геохимической характеристики нефти обусловлено особенностями распределения МЭ по ее фракционному составу. Многолетние исследования показали, что в маслах содержится, %: до 20-45 скандия, 6-18 ванадия, 4-35 галлия, 3-8 хрома и до 10 бария. Концентрация таких элементов как титан, цинк, ванадий, цирконий, стронций составляет не более 1-4%, остальные – определяются на пределе чувствительности метода. В смолах содержится, %: до 10-25 Sc, 10-25 V, 60–90 Cr, 45–74 Mn, 22–30 Co, 20–43 Ni, 30–65 Cu, 60-73 Zn, 23-30 Rb, 15-34 Sr, 9-17 Y, 5-16 Mo, 7-28 Ba, 15-47 Ag, 10-16 редкоземельные элементы, 70-87 Re, 7-55 Pb, 17-23 Au, приблизительно 40 Se, до 60 и более Hg, Sb, As и Te. Основными концентраторами литофильных элементов являются асфальтены.

Таким образом, использование смолисто-асфальтеновых компонентов для сравнительного анализа металлогенических характеристик нефти различных регионов вполне оправдано, в достаточно полной мере отражает ее геохимические особенности и позволяет избежать ошибок, получаемых как при изучении зольных остатков, так и сырой нефти, содержание микроэлементов

Всероссийский научно-исследовательский институт геологических, геофизических и геохимических информационных систем, Москва

редких элементов, Москва

Эле	Днепровско-Донецкая (ДДВ)		Тимано-Печорская (ТПП)		Волго-Уральская (ВУП)		Западно-Сибирская		Восточно-Сибирская	
мент	Среднее значение	Предел колебаний	Среднее значение	Предел колебаний	Среднее значение	Предел колебаний	Среднее значение	Предел колебаний	Среднее значение	Предел колебаний
Sc	300.0	65–650	166.0	99–196	102.0	80-150	103.0	63–203	130.0	70–296
Ti	9724.0	600-43000	3241.0	1200-7400	5243.0	2200-7540	3545.0	2040-8490	2643.0	630–7430
V	28370.0	1650-117000	61635.0	5960-137000	227600.0	78800-506000	26190.0	5450-71370	6109.0	900-12300
Cr	5985.0	880-12040	18380.0	2780-37200	10835.0	2730-27500	13207.0	1630-31020	12883.0	1730-35200
Mn	955.0	430–1750	1435.0	580-2040	1728.0	1130-3270	2965.0	750-8570	724.0	150-1830
Fe	150480.0	17600-458000	259947.0	75200-505000	109582.0	54000-220000	54276.0	20150-101610	141825.0	3000–640920
Co	87.0	14–160	208.0	80–475	207.0	120-420	101.0	30–196	67.0	25-145
Ni	19027.0	470-67900	56170.0	6950–136000	72016.0	6400–120000	23328.0	3000-67140	14890.0	1050-30550
Cu	6105.0	1730–16600	51804.0	11000-130900	31283.0	19200-43500	15180.0	5300-35750	11974.0	1290–19700
Zn	16183.0	3500-32390	43747.0	14300-74900	49720.0	15400-79500	72282.0	25320-143650	106534.0	13150-481000
Ga	26.3	3-48	100.7	25-160	157.4	80-220	14.4	7–23	17.7	1.5–58
As	-	700–4900	_	-	250.0	120–1500	-	-		700–2100
Se		200–1500	1000.0	300-1800	400.0	100-800				250-2900
Rb	35.2	9-80	62.5	23–130	79.3	50-140	76.0	36–154	37.3	6–98
Sr	6657.0	730–22630	1425.0	120–3580	2850.0	450–5530	2270.0	1130–3820	1033.0	380–2670
Y	11.1	2–37	21.7	4–38	16.9	10–30	20.2	9–37	8.3	0.9–28
Zr	1275.0	410-4530	378.0	120–905	352.0	170–550	328.0	193–340	634.0	55-3400
Nb	2.7	1.10	9.9	5–26	13.5	4.5–30	8.3	1–26		4.4–6
Mo	45.6	10–130	315.8	80–600	1600.0	340-42 000	58.0	12–162	171.0	40–605
Pd	4.25		2.53		3.34		2.55		0.87	
Ag	17000.0	400–150000	630.0	80-1800	322.0	90–650	65.0	26–112	330.0	28–370
Cd	46.0	22–104	403.0	46–310	180.0	60–250	46.5	26–71	129.0	12–280
Sb	7200.0	60-40000	15400.0	500-60 000	80.0	30–300	-	-		200-18000
Te	-	-	-	_	160.0	100-700	-	-	_	_
Cs	0.6	0.2–1.1	1.9	0.6–3	2.3	0.8–4.9	5.7	1.5–14	1.2	0.7–3.3
Ba	4147.0	1780–9060	5600.0	600–7340	2084.0	1050–3270	4423.0	2900-6700	2578.0	600–5350
TR	136.0	30-405	182.0	78–446	170.0	88–240	180.0	35-610	96.0	32–217
Hf	31.6	9–115	6.0	3.4-8.4	8.3	4.5–17.8	7.0	4–13	3.5	1.2–21
Та		<(0.1–3.4)	0.6	0.2–1.0	1.0	0.5–2.0	-		0.7	0.4–1.7
W	20.0	7-48	176.0	50–285	61.6	35–100	80.0	18–260	82.0	35–250
Re	4.5	0.9–9.4	5.4	0.5–14.3	51.9	7–164	3.1	0.4–6.9	3.4	1.2–7.7
Pt	1.08		1.41		0.49		0.53		0.54	
Au		1.5-8600	60.0	8–205	98.4	50–160	7.1	3–18	102.0	2.0-208
Hg	247000.0	9000-1200000	700.0	200-13 900	2300.0	130–11 850	84.4	50–145		150-23000
Tl	1.6	0.6–3.7	2.1	0.8–5.6	1.7	0.7–3.4	1.9	1.2–3	1.4	0.5–2.0
Pb	1130.0	208-3510	4758.0	1140-10000	2009.0	700–7040	16 530.0	9300-21680	2248.0	100-8790
Bi	17.1	6–50	100.0	46–170	133.0	45–380	29.0	16–67	30.5	3.6–49
Th	15.0	1.5–21	6.0	1.5–13	5.2	2.8–48	6.2	3–13	3.3	1.5–7
U	3.0	0.7-8.1	12.0	5–29	16.0	4-48	4.2	2-6.5	3.2	0.5–7.5

доклады академии наук

том 422

<u>%</u>

2008

Таблица 1. Содержание элементов (ppb) в смолисто-асфальтеновых компонентах нефти различных нефтегазоносных провинций

в которой определяется, прежде всего, ее составом. Однако используя данную методику, заведомо занижаем в нефти суммарное количество селена, ртути, мышьяка. Если Se относительно равномерно распределен по фракциям, то Hg накапливается в маслах и бензольных смолах. Преимущественно в маслах присутствует As, который редко определяется, "теряясь" при подготовке проб к анализу. Отмеченные особенности в распределении элементов объясняются, прежде всего, свойствами и структурой комплексов, которые они образуют с углеродсодержащими лигандами.

При применении для анализа МЭ метода ІСР-MS разложение органической матрицы образцов проводили в герметичных условиях в два этапа. На первом этапе пробы помещали в автоклавы с внутренними тефлоновыми вкладышами и разлагались при нагревании в течение часа смесью азотной и хлорной кислот в микроволновой печи MULTIWAVE фирмы Anton Paar. На пике разложения температура в автоклаве достигала 350°, давление 1.8 МПа. Затем автоклавы охлаждали в холодильной камере до полной конденсации парообразной фазы. На втором этапе в тефлоновый сосуд добавляли азотную кислоту, пероксид водорода и в течение часа происходило окончательное разложение пробы. После повторного охлаждения прозрачный раствор направляли на анализ. Измерения проводили на приборе Elan 6100 DRC с пределом обнаружения от 1–2 ppb для тяжелых и средних (U, Th, редкоземельные, Rb, Sr и др.), до 20-100 ррв для легких и главных элементов (Li, Be, Ca, Fe).

Полученный материал приведен в табл. 1, где, наряду со средними значениями содержания МЭ, даны пределы их колебаний. Следует отметить, что при определении средних значений исключались пробы с аномально высоким и аномально низким уровнем концентрирования. Так, например, данные по содержанию редкоземельных элементов в нефти из скважины Лобоганской 1 (ППП) достигают 30210 ppb, и в аналогичных фракциях Ярактинской площади (Непско-Ботуобинская область) 10-14 ppb. Не всегда удается в связи со значительным разбросом оценить средние значения для летучих халькофильных элементов. Например, содержание в нефти даже в пределах одного месторождения ртути и сурьмы может достигать двух и более порядков, серебра и золота до одного порядка, что определяется, главным образом, положением скважин относительно разломов.

Рассмотрение данных, приведенных в табл. 1 и на (рис. 1), показало конформность в кривых распределения МЭ независимо от принадлежности нефти к той или иной нефтегазоносной провинции и обогащенность всех исследованных проб относительно кларка верхней коры летучими халькофильными элементами (Hg, As, Sb, Se, Te, Cd, Ag, Au) и выборочно ванадием, медью, рением, никелем, близки к коровым концентрации хрома, цинка, свинца, висмута.

Количественный анализ микроэлементного состава слоисто-асфальтеновых компонентов нефти по регионам позволил определить близкую геохимическую специализацию нефтей Волго-Уральской и Тимано-Печорской провинций, выразившуюся в накоплении в них Cr, Co, Ni, V, Cu, Ga, Cd, U. Кроме того, первые характеризуются высокими концентрациями Мо и Re, вторые – Ba, W, Fe. Отличительной особенностью нефти Днепровско-Донецкой впадины является обогащенность Ті, Zr, Hf, Sc, Th. Высокое содержание тория обеспечило в них отношение Th/U выше единицы. Нефть Западной Сибири характеризуется высоким содержанием Pb, повышенным – Mn, Zn, Ni, Y, Cs, Ba, W. Нефть Восточной Сибири, при ее наиболее низкой металлоносности, отличает повышенный уровень накопления Zn, Cr, Zr, Cd.

По соотношению между летучими элементами, несмотря на значительный разброс в их содержании, можно выделить As–Sb–Au–Ag–Hg специализацию нефти Днепровско-Донецкой, Se–Sb – Тимано-Печорской, Hg–Te–Re – Волго-Уральской, As–Se–Sb–Hg–Au – Восточно-Сибирской и Pb – Западно-Сибирской провинций. Особенно богата как по набору, так и содержанию летучих элементов нефть Восточной Сибири. В целом содержание этих элементов повсеместно превышает кларк для базальтов, в которых они концентрируются.

Ранее при изучении особенностей распределения в нефти различных регионов элементов платиновой группы был сделан вывод об определяющей роли в формировании ее геохимического облика металлов гипербазитового профиля [6]. Значительный вклад элементов основного-ультраосновного профиля вытекает и из анализа диаграммы, представленной на рис. 2а, из которой следует, что области, характеризующие вклад Cu, Cr, Co в металлоносность нефти различных регионов, в значительной степени перекрываются. Однако существуют и различия. Так, если нефти Тимано-Печорской, Волго-Уральской и Западно-Сибирской провинций относительно обогащены медью, то нефти Днепровско-Донецкой – кобальтом, Восточной Сибири – занимают промежуточное положение. Это отражает, судя по всему, геолого-тектоническую историю развития регионов и, прежде всего, выраженность основного магматизма нормальной щелочности средне-девонского этапа в пределах первых двух территорий и пермо-триасового - в Западной Сибири.

Присутствие в нефти, наряду с сидеро- и халькофильными элементами литофильных, отража-

Рис. 1. Распределение нечетных (а) и четных (б) элементов по концентрации С в смолисто-асфальтеновых компонентах нефти различных нефтегазоносных провинций.

ет участие в формировании восстановленных флюидов источников вещества повышенной щелочности. Кроме того, во всех пробах нефти отмечается повышенное содержание свинца, в том числе радиогенного, что обусловлено, по-видимому, его выносом восстановленными флюидами из пород консолидированной земной коры. Этот процесс, надо полагать, обеспечивает и низкое отношение ³He/⁴He в залежах углеводородов. На рис. 26 приведена диаграмма, отражающая как степень щелочности источников флюидов, так и степень контаминированности их коровым материалом. Для построения ее, помимо свинца, использованы цирконий и титан в связи с тем, что эталоном резервуаров, обогащенных литофильными элементами, являются базальты океанических островов (OIB) с максимальным накоплением по отношению к другим источникам Ti и Zr. Как следует из диаграммы, наибольшей щелочностью обладают источники, формирующие флюиды, участвующие в нефтенакоплении в пределах Днепровского грабена, Непско-Ботуобинской антеклизы и Южно-Татарского свода. Максимальная степень контаминированности характерна для нефти Западной Сибири и Тимано-Печорской провинции с мощными складчатыми промежуточными комплексами.

В заключение следует сказать несколько слов о ванадии, элементе, присутствующем в нефти многих месторождений в значительных количествах и наиболее часто привлекаемом для обоснования участия живого вещества в процессах нефтеобразования. Вопрос о парагенезисе V–Ni–Zn парагенезисе достаточно подробно рассмотрен в работе [6], где на основании анализа геохимического спектра нефти и асфальтита кимберлитовых трубок сделан вывод об особенно высоком сродстве с рассматриваемыми металлами восстановленных флюидов, селективно экстрагирующих их из магматических расплавов, что и обеспечивает "нефтяной" парагенезис металлов.

Таким образом, совокупность приведенных материалов позволяет говорить о том, что геохимическая характеристика нефти определяется особенностями формирования флюидов, участвующих в процессах нефтеобразования, которые в

ДОКЛАДЫ АКАДЕМИИ НАУК том 422 № 1 2008

Рис. 2. Дискриминационные диаграммы Cr–Cu–Co (а) и Ti–Zr–Pb (б) для смолисто-асфальтеновых компонентов нефти различных регионов.

свою очередь связаны с типом, степенью и последовательностью проявления магматизма в геолого-тектонической истории становления нефтегазоносных территорий. Развивающийся во времени щелочной уклон в магматизме служит индикатором структурной эволюции депрессий, благоприятных для нефтеобразования, и играет роль своеобразного кислородного фильтра для флюидов (образование фельдшпатоидов, минералов мелилитовой группы, окисления железа в минералах), что способствует формированию восстановленных систем [7]. Последнее согласуется с развиваемыми представленими о нарастании щелочного магматизма в истории планеты, наличии структурных связей с ранее внедрившимися магмами, изменении состава флюидов при ощелачивании магм в сторону их большей восстановленности. Образующиеся углеводородные компоненты, наряду с хлором, фтором и другими летучими соединениями, "заимствуют" МЭ из среды кристаллизации минералов с последующим образованием в процессе поликонденсации при восходящей миграции вещества сложных комплексов с органическими лигандами.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 07–05–0054).

ëèàëéä ãàí ÖêÄí ì êõ

- 1. Пунанова С.А. // Геохимия. 2004. № 8. С. 893–907.
- 2. Полякова И.Д. // Геология и геофизика. 1996. Т. 37. № 3. С. 62–67.
- 3. Вешев С.А., Степанов К.И., Васильева Т.Н. // Геохимия. 2000. № 10. С. 1132–1136.
- 4. Ясныгина Т.А., Малых Ю.М., Рассказов С.В. и др. // ДАН. 2006. Т. 410. № 5. С. 672–675.
- 5. Иванов К.С., Ерохин Ю.В., Ронкин Ю.Л. др. В сб.: Материалы Междунар. науч. конф. Казань: Дента, 2006. С. 100–103.
- 6. Маракушев А.А., Писоцкий Б.И., Панеях Н.А. и др. // ДАН. 2004. Т. 398. № 6. С. 795–799.
- 7. Маракушев А.А., Маракушев С.А. // ДАН. 2006. Т. 411. № 1. С. 111–117.